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Anti-Ramsey Type Problems



Motivation: Ramsey Numbers

Color each edge of the complete graph
Kn red or blue

Ramsey’s Theorem: There is always a
blue copy of Kr or a red copy of Ks if n
is sufficiently large. The smallest such n
is denoted R(r , s).
For example, R(3,3) = 6, so we can
always find a monochromatic triangle in
a K6.
rk (p) is the smallest n such that coloring
the edges of Kn with k colors will always
produce a monochromatic copy of Kp.
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Generalized Ramsey Numbers

rk (p)− 1 is the largest n such that Kn can be colored so
that every Kp has at least 2 distinct colors.

Definition

For positive integers p and q with p ≥ 3 and 2 ≤ q ≤
(p

2

)
, a

(p,q)-coloring is an edge-coloring of Kn where every copy of Kp
has at least q distinct colors

f (n,p,q) is the minimal number of colors of a (p,q)
coloring of Kn

Finding an asymptotic estimate for f (n,p,2) is equivalent
to finding an asymptotic estimate for rk (p) (difficult).
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Example: f(6,3,2)

Since R(3,3) = 6, no coloring of K6 with 2 colors can be a
(3,2)-coloring. So f (6,3,2) > 2.

But there does exist a (3,2) coloring using 3 colors, so
f (6,3,2) = 3:
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Small Cases

A (3,3) coloring is equivalent to a proper edge-coloring
(one in which no two adjacent edges have the same color),
so f (n,3,3) equals n for n odd and n − 1 for n even.

For f (n,4,3), the best known lower bound is Ω(log n) and
best known upper bound is 2O(

√
log n) (from a coloring

constructed by Mubayi)
f (n,4,4) is known to be n1/2+o(1) (also due to Mubayi)
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More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and q, f (n,p,q) ≤ cn
p−2

(p
2)−q+1

Their proof is nonconstructive (uses probabilistic method)
They also showed that f (n,p,p) has to be polynomial in n
However, Conlon et al. showed that f (n,p,p − 1) is
subpolynomial in n
Their coloring is a generalization of Mubayi’s optimal
coloring for f (n,4,3)
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Our (4,3)-Coloring

Partition {1,2, · · · ,n} into t = d2
√

log ne equally sized sets and
label them 1− t . Do this for k = d2

√
log ne partitions so that

every edge crosses between two sets in some partition.

For e = {a,b}, let c1(e) be the smallest
i for which e is crossing in the i th
partition. In the picture, c1(e) = 2.
Let c2(e) be the pair of labels of the
sets e crosses between in the partition
numbered c1(e).
Let c3(e) be a binary string of length k
where the i th entry is 1 iff e is crossing
in the i th partition. Here c3(e) = (0,1).
The triple (c1(e), c2(e), c3(e)) is the
color of e.
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Our (4,3)-Coloring.

Why does this work?

No monochromatic triangles
This leaves only the following bad K4s:

In total we used t22k colors, which is 2O(
√

log n) since
k = d2

√
log ne and t = d2

√
log ne.
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Future work

Modify the above coloring by choosing a coloring on Kt
and using this to determine c2(e).

Work on the lower bound
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