## Anti-Ramsey Type Problems

### Sean Elliott Mentor: Dr. Asaf Ferber

### May 19, 2018 MIT Primes Conference

Anti-Ramsey Type Problems

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## Motivation: Ramsey Numbers

• Color each edge of the complete graph *K<sub>n</sub>* red or blue

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Color each edge of the complete graph *K<sub>n</sub>* red or blue



Anti-Ramsey Type Problems

イロン 不得 とくほ とくほ とうほ

- Color each edge of the complete graph *K<sub>n</sub>* red or blue
- **Ramsey's Theorem:** There is always a blue copy of *K*<sub>r</sub> or a red copy of *K*<sub>s</sub> if *n* is sufficiently large. The smallest such *n* is denoted *R*(*r*, *s*).



Anti-Ramsey Type Problems

・ロト ・ 理 ト ・ ヨ ト ・

- Color each edge of the complete graph *K<sub>n</sub>* red or blue
- **Ramsey's Theorem:** There is always a blue copy of *K*<sub>r</sub> or a red copy of *K*<sub>s</sub> if *n* is sufficiently large. The smallest such *n* is denoted *R*(*r*, *s*).
- For example, R(3,3) = 6, so we can always find a monochromatic triangle in a K<sub>6</sub>.



ヘロン ヘアン ヘビン ヘビン

- Color each edge of the complete graph *K<sub>n</sub>* red or blue
- **Ramsey's Theorem:** There is always a blue copy of *K*<sub>r</sub> or a red copy of *K*<sub>s</sub> if *n* is sufficiently large. The smallest such *n* is denoted *R*(*r*, *s*).
- For example, R(3,3) = 6, so we can always find a monochromatic triangle in a K<sub>6</sub>.





ヘロア 人間 アメヨア 人口 ア

- Color each edge of the complete graph K<sub>n</sub> red or blue
- **Ramsey's Theorem:** There is always a blue copy of *K*<sub>r</sub> or a red copy of *K*<sub>s</sub> if *n* is sufficiently large. The smallest such *n* is denoted *R*(*r*, *s*).
- For example, R(3,3) = 6, so we can always find a monochromatic triangle in a K<sub>6</sub>.
- r<sub>k</sub>(p) is the smallest n such that coloring the edges of K<sub>n</sub> with k colors will always produce a monochromatic copy of K<sub>p</sub>.





ヘロン ヘアン ヘビン ヘビン

## **Generalized Ramsey Numbers**

r<sub>k</sub>(p) - 1 is the largest n such that K<sub>n</sub> can be colored so that every K<sub>p</sub> has at least 2 distinct colors.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

r<sub>k</sub>(p) - 1 is the largest n such that K<sub>n</sub> can be colored so that every K<sub>p</sub> has at least 2 distinct colors.

#### Definition

For positive integers p and q with  $p \ge 3$  and  $2 \le q \le {p \choose 2}$ , a (p,q)-coloring is an edge-coloring of  $K_n$  where every copy of  $K_p$  has at least q distinct colors

r<sub>k</sub>(p) - 1 is the largest n such that K<sub>n</sub> can be colored so that every K<sub>p</sub> has at least 2 distinct colors.

#### Definition

For positive integers p and q with  $p \ge 3$  and  $2 \le q \le {p \choose 2}$ , a (p,q)-coloring is an edge-coloring of  $K_n$  where every copy of  $K_p$  has at least q distinct colors

f(n, p, q) is the minimal number of colors of a (p, q) coloring of K<sub>n</sub>

r<sub>k</sub>(p) - 1 is the largest n such that K<sub>n</sub> can be colored so that every K<sub>p</sub> has at least 2 distinct colors.

#### Definition

For positive integers p and q with  $p \ge 3$  and  $2 \le q \le {p \choose 2}$ , a (p,q)-coloring is an edge-coloring of  $K_n$  where every copy of  $K_p$  has at least q distinct colors

- f(n, p, q) is the minimal number of colors of a (p, q) coloring of K<sub>n</sub>
- Finding an asymptotic estimate for f(n, p, 2) is equivalent to finding an asymptotic estimate for r<sub>k</sub>(p) (difficult).

Since *R*(3,3) = 6, no coloring of *K*<sub>6</sub> with 2 colors can be a (3,2)-coloring. So *f*(6,3,2) > 2.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

- Since *R*(3,3) = 6, no coloring of *K*<sub>6</sub> with 2 colors can be a (3,2)-coloring. So *f*(6,3,2) > 2.
- But there does exist a (3,2) coloring using 3 colors, so f(6,3,2) = 3:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 A (3,3) coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so f(n,3,3) equals n for n odd and n - 1 for n even.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- A (3,3) coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so f(n,3,3) equals *n* for *n* odd and n-1 for *n* even.
- For f(n, 4, 3), the best known lower bound is Ω(log n) and best known upper bound is 2<sup>O(√log n)</sup> (from a coloring constructed by Mubayi)

- A (3,3) coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so f(n,3,3) equals *n* for *n* odd and n-1 for *n* even.
- For f(n, 4, 3), the best known lower bound is Ω(log n) and best known upper bound is 2<sup>O(√log n)</sup> (from a coloring constructed by Mubayi)
- f(n, 4, 4) is known to be  $n^{1/2+o(1)}$  (also due to Mubayi)

For some *c* depending on *p* and *q*,  $f(n, p, q) \leq cn^{\frac{p-2}{\binom{p}{2}-q+1}}$ 

Anti-Ramsey Type Problems

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For some *c* depending on *p* and *q*,  $f(n, p, q) \leq cn^{\binom{p-2}{\binom{p}{2}-q+1}}$ 

• Their proof is nonconstructive (uses probabilistic method)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

For some *c* depending on *p* and *q*,  $f(n, p, q) \leq cn^{\frac{p-2}{\binom{p}{2}-q+1}}$ 

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that f(n, p, p) has to be polynomial in n

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For some *c* depending on *p* and *q*,  $f(n, p, q) \leq cn^{\binom{p-2}{\binom{p}{2}-q+1}}$ 

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that f(n, p, p) has to be polynomial in n
- However, Conlon et al. showed that f(n, p, p 1) is subpolynomial in n

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For some *c* depending on *p* and *q*,  $f(n, p, q) \leq cn^{\binom{p-2}{\binom{p}{2}-q+1}}$ 

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that f(n, p, p) has to be polynomial in n
- However, Conlon et al. showed that f(n, p, p-1) is subpolynomial in n
- Their coloring is a generalization of Mubayi's optimal coloring for f(n, 4, 3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2\sqrt{\log n} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.

Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2^{\sqrt{\log n}} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.



#### Anti-Ramsey Type Problems

Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2^{\sqrt{\log n}} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.

• For  $e = \{a, b\}$ , let  $c_1(e)$  be the smallest *i* for which *e* is crossing in the *i*th partition. In the picture,  $c_1(e) = 2$ .



Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2^{\sqrt{\log n}} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.

- For  $e = \{a, b\}$ , let  $c_1(e)$  be the smallest *i* for which *e* is crossing in the *i*th partition. In the picture,  $c_1(e) = 2$ .
- Let c<sub>2</sub>(e) be the pair of labels of the sets e crosses between in the partition numbered c<sub>1</sub>(e).



Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2\sqrt{\log n} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.

- For  $e = \{a, b\}$ , let  $c_1(e)$  be the smallest *i* for which *e* is crossing in the *i*th partition. In the picture,  $c_1(e) = 2$ .
- Let c<sub>2</sub>(e) be the pair of labels of the sets e crosses between in the partition numbered c<sub>1</sub>(e).
- Let  $c_3(e)$  be a binary string of length k where the *i*th entry is 1 iff e is crossing in the *i*th partition. Here  $c_3(e) = (0, 1)$ .



Partition  $\{1, 2, \dots, n\}$  into  $t = \lceil 2^{\sqrt{\log n}} \rceil$  equally sized sets and label them 1 - t. Do this for  $k = \lceil 2\sqrt{\log n} \rceil$  partitions so that every edge crosses between two sets in some partition.

- For  $e = \{a, b\}$ , let  $c_1(e)$  be the smallest *i* for which *e* is crossing in the *i*th partition. In the picture,  $c_1(e) = 2$ .
- Let c<sub>2</sub>(e) be the pair of labels of the sets e crosses between in the partition numbered c<sub>1</sub>(e).
- Let  $c_3(e)$  be a binary string of length k where the *i*th entry is 1 iff e is crossing in the *i*th partition. Here  $c_3(e) = (0, 1)$ .





• Why does this work?

Anti-Ramsey Type Problems

- Why does this work?
- No monochromatic triangles

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K<sub>4</sub>s:



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K<sub>4</sub>s:



• In total we used  $t^2 2^k$  colors, which is  $2^{O(\sqrt{\log n})}$  since  $k = \lceil 2\sqrt{\log n} \rceil$  and  $t = \lceil 2^{\sqrt{\log n}} \rceil$ .

 Modify the above coloring by choosing a coloring on K<sub>t</sub> and using this to determine c<sub>2</sub>(e).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Modify the above coloring by choosing a coloring on K<sub>t</sub> and using this to determine c<sub>2</sub>(e).
- Work on the lower bound

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

I would like to thank:

- My mentor, Dr. Asaf Ferber
- The MIT PRIMES-USA program
- The MIT math department
- My parents

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ