Anti-Ramsey Type Problems

Sean Elliott
Mentor: Dr. Asaf Ferber

May 19, 2018
MIT Primes Conference

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue
- Ramsey's Theorem: There is always a blue copy of K_{r} or a red copy of K_{s} if n
 is sufficiently large. The smallest such n is denoted $R(r, s)$.

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue
- Ramsey's Theorem: There is always a blue copy of K_{r} or a red copy of K_{s} if n
 is sufficiently large. The smallest such n is denoted $R(r, s)$.
- For example, $R(3,3)=6$, so we can always find a monochromatic triangle in a K_{6}.

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue
- Ramsey's Theorem: There is always a blue copy of K_{r} or a red copy of K_{s} if n is sufficiently large. The smallest such n is denoted $R(r, s)$.
- For example, $R(3,3)=6$, so we can always find a monochromatic triangle in a K_{6}.

Motivation: Ramsey Numbers

- Color each edge of the complete graph K_{n} red or blue
- Ramsey's Theorem: There is always a blue copy of K_{r} or a red copy of K_{s} if n is sufficiently large. The smallest such n is denoted $R(r, s)$.
- For example, $R(3,3)=6$, so we can always find a monochromatic triangle in a K_{6}.
- $r_{k}(p)$ is the smallest n such that coloring
 the edges of K_{n} with k colors will always produce a monochromatic copy of K_{p}.

Generalized Ramsey Numbers

- $r_{k}(p)-1$ is the largest n such that K_{n} can be colored so that every K_{p} has at least 2 distinct colors.

Generalized Ramsey Numbers

- $r_{k}(p)-1$ is the largest n such that K_{n} can be colored so that every K_{p} has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq\binom{ p}{2}$, a (p, q)-coloring is an edge-coloring of K_{n} where every copy of K_{p} has at least q distinct colors

Generalized Ramsey Numbers

- $r_{k}(p)-1$ is the largest n such that K_{n} can be colored so that every K_{p} has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq\binom{ p}{2}$, a (p, q)-coloring is an edge-coloring of K_{n} where every copy of K_{p} has at least q distinct colors

- $f(n, p, q)$ is the minimal number of colors of a (p, q) coloring of K_{n}

Generalized Ramsey Numbers

- $r_{k}(p)-1$ is the largest n such that K_{n} can be colored so that every K_{p} has at least 2 distinct colors.

Definition

For positive integers p and q with $p \geq 3$ and $2 \leq q \leq\binom{ p}{2}$, a (p, q)-coloring is an edge-coloring of K_{n} where every copy of K_{p} has at least q distinct colors

- $f(n, p, q)$ is the minimal number of colors of a (p, q) coloring of K_{n}
- Finding an asymptotic estimate for $f(n, p, 2)$ is equivalent to finding an asymptotic estimate for $r_{k}(p)$ (difficult).

Example: $f(6,3,2)$

- Since $R(3,3)=6$, no coloring of K_{6} with 2 colors can be a $(3,2)$-coloring. So $f(6,3,2)>2$.

Example: $f(6,3,2)$

- Since $R(3,3)=6$, no coloring of K_{6} with 2 colors can be a $(3,2)$-coloring. So $f(6,3,2)>2$.
- But there does exist a $(3,2)$ coloring using 3 colors, so $f(6,3,2)=3:$

Small Cases

- A $(3,3)$ coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n, 3,3)$ equals n for n odd and $n-1$ for n even.

Small Cases

- A $(3,3)$ coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n, 3,3)$ equals n for n odd and $n-1$ for n even.
- For $f(n, 4,3)$, the best known lower bound is $\Omega(\log n)$ and best known upper bound is $2^{O(\sqrt{\log n})}$ (from a coloring constructed by Mubayi)

Small Cases

- A $(3,3)$ coloring is equivalent to a proper edge-coloring (one in which no two adjacent edges have the same color), so $f(n, 3,3)$ equals n for n odd and $n-1$ for n even.
- For $f(n, 4,3)$, the best known lower bound is $\Omega(\log n)$ and best known upper bound is $2^{O(\sqrt{\log n})}$ (from a coloring constructed by Mubayi)
- $f(n, 4,4)$ is known to be $n^{1 / 2+o(1)}$ (also due to Mubayi)

More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and $q, f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}$

More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and $q, f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}$

- Their proof is nonconstructive (uses probabilistic method)

More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and $q, f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n

More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and $q, f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n
- However, Conlon et al. showed that $f(n, p, p-1)$ is subpolynomial in n

More general bounds

Theorem (Erdős and Gyárfás, 1997)

For some c depending on p and $q, f(n, p, q) \leq c n^{\frac{p-2}{\binom{p}{2}-q+1}}$

- Their proof is nonconstructive (uses probabilistic method)
- They also showed that $f(n, p, p)$ has to be polynomial in n
- However, Conlon et al. showed that $f(n, p, p-1)$ is subpolynomial in n
- Their coloring is a generalization of Mubayi's optimal coloring for $f(n, 4,3)$

Our $(4,3)$-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

Our $(4,3)$-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

Our (4,3)-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

- For $e=\{a, b\}$, let $c_{1}(e)$ be the smallest i for which e is crossing in the i th partition. In the picture, $c_{1}(e)=2$.

Our (4,3)-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

- For $e=\{a, b\}$, let $c_{1}(e)$ be the smallest i for which e is crossing in the i th partition. In the picture, $c_{1}(e)=2$.
- Let $c_{2}(e)$ be the pair of labels of the sets e crosses between in the partition numbered $c_{1}(e)$.

Our (4,3)-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

- For $e=\{a, b\}$, let $c_{1}(e)$ be the smallest i for which e is crossing in the i th partition. In the picture, $c_{1}(e)=2$.
- Let $c_{2}(e)$ be the pair of labels of the sets e crosses between in the partition numbered $c_{1}(e)$.
- Let $c_{3}(e)$ be a binary string of length k where the ith entry is 1 iff e is crossing in the i th partition. Here $c_{3}(e)=(0,1)$.

Our (4,3)-Coloring

Partition $\{1,2, \cdots, n\}$ into $t=\left\lceil 2^{\sqrt{\log n}}\right\rceil$ equally sized sets and label them $1-t$. Do this for $k=\lceil 2 \sqrt{\log n}\rceil$ partitions so that every edge crosses between two sets in some partition.

- For $e=\{a, b\}$, let $c_{1}(e)$ be the smallest i for which e is crossing in the i th partition. In the picture, $c_{1}(e)=2$.
- Let $c_{2}(e)$ be the pair of labels of the sets e crosses between in the partition numbered $c_{1}(e)$.
- Let $c_{3}(e)$ be a binary string of length k where the ith entry is 1 iff e is crossing in the i th partition. Here $c_{3}(e)=(0,1)$.
- The triple $\left(c_{1}(e), c_{2}(e), c_{3}(e)\right)$ is the color of e.

Our $(4,3)$-Coloring.

- Why does this work?

Our $(4,3)$-Coloring.

- Why does this work?
- No monochromatic triangles

Our $(4,3)$-Coloring.

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K_{4} s:

Our $(4,3)$-Coloring.

- Why does this work?
- No monochromatic triangles
- This leaves only the following bad K_{4} s:

- In total we used $t^{2} 2^{k}$ colors, which is $2^{O(\sqrt{\log n})}$ since $k=\lceil 2 \sqrt{\log n}\rceil$ and $t=\lceil 2 \sqrt{\log n}\rceil$.

Future work

- Modify the above coloring by choosing a coloring on K_{t} and using this to determine $c_{2}(e)$.

Future work

- Modify the above coloring by choosing a coloring on K_{t} and using this to determine $c_{2}(e)$.
- Work on the lower bound

Acknowledgements

I would like to thank:

- My mentor, Dr. Asaf Ferber
- The MIT PRIMES-USA program
- The MIT math department
- My parents

